Linear and Systematic Block Codes

The parity bits of linear block codes are linear combination of the message. Therefore, we can represent the encoder by a linear system described by matrices.

Basic Definitions

- Linearity:

$$
\begin{aligned}
& \text { If } \quad \mathbf{m}_{1} \rightarrow \mathbf{c}_{1} \text { and } \mathrm{m}_{2} \rightarrow \mathbf{c}_{2} \\
& \text { then } \mathrm{m}_{1} \oplus \mathrm{~m}_{2} \rightarrow \mathbf{c}_{1} \oplus \mathbf{c}_{2}
\end{aligned}
$$

where $\quad \mathbf{m}$ is a k-bit information sequence
c is an n-bit codeword.
\oplus is a bit-by-bit mod-2 addition without carry

- Linear code: The sum of any two codewords is a codeword.
- Observation: The all-zero sequence is a codeword in every
linear block code.

Basic Definitions (cont'd)

- Def: The weight of a codeword \mathbf{c}_{i}, denoted by $w\left(\mathbf{c}_{i}\right)$, is the number of of nonzero elements in the codeword.
- Def: The minimum weight of a code, $w_{\text {min }}$, is the smallest weight of the nonzero codewords in the code.
- Theorem: In any linear code, $d_{\text {min }}=w_{\text {min }}$
- Systematic codes

Any linear block code can be put in systematic form

linear Encoder.

By linear transformation
$\boldsymbol{C}=\boldsymbol{m} \cdot \boldsymbol{G}=\boldsymbol{m}_{o} \boldsymbol{g}_{o}+\boldsymbol{m}_{1} \boldsymbol{g}_{o}+\ldots . . .+\mathrm{m}_{k-1} \boldsymbol{g}_{\boldsymbol{k}-1}$
The code C is called a k-dimensional subspace.
G is called a generator matrix of the code.
Here \boldsymbol{G} is a $\boldsymbol{k} \times \boldsymbol{n}$ matrix of rank \boldsymbol{k} of elements from $G F(2), g$ is the i-th row vector of G.
The rows of G are linearly independent since G is assumed to have rank k.

Example:

(7, 4) Hamming code over GF(2)
The encoding equation for this code is given by

$$
\begin{aligned}
& c_{o}=m_{o} \\
& c_{1}=m_{1} \\
& c_{2}=m_{2} \\
& c_{3}=m_{3} \\
& c_{4}=m_{o}+m_{1}+m_{2} \\
& c_{5}=m_{1}+m_{2}+m_{3} \\
& c_{6}=m_{o}+m_{1}+m_{3}
\end{aligned}
$$

$$
G=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

Linear Systematic Block Code:

An (n, k) linear systematic code is completely specified by akxn generator matrix of the following form.

$$
\boldsymbol{G}=\left[\begin{array}{c}
\overline{\boldsymbol{g}}_{0} \\
\overline{\boldsymbol{g}}_{1} \\
\vdots \\
\overline{\boldsymbol{g}}_{k-1}
\end{array}\right]=\left[\boldsymbol{I}_{k} \boldsymbol{P}\right]
$$

where I_{k} is the $\mathbf{k} \times \mathbf{k}$ identity matrix.

Linear Block Codes

- the number of codeworde is 2^{k} since there are 2^{k} distinct messages.
- The set of vectors $\left\{\mathrm{g}_{\mathrm{i}}\right\}$ are linearly independent since we must have a set of unique codewords.
- linearly independent vectors mean that no vector g_{i} can be expressed as a linear combination of the other vectors.
- These vectors are called baises vectors of the vector space C.
- The dimension of this vector space is the number of the basis vector which are k.
- $G_{i} \in C \rightarrow$ the rows of G are all legal codewords.

Hamming Weight

 the minimum hamming distance of a linear block code is equal to the minimum hamming weight of the nonzero code vectors.Since each $g_{i} \in C$, we must have $W_{h}\left(g_{i}\right) \geq d_{\text {min }}$ this a necessary condition but not sufficient.

Therefore, if the hamming weight of one of the rows of G is less than $\mathrm{d}_{\text {min }}, \rightarrow \mathrm{d}_{\text {min }}$ is not correct or G not correct.

Generator Matrix

- All 2^{k} codewords can be generated from a set of k linearly independent codewords.
- The simplest choice of this set is the k codewords corresponding to the information sequences that have a single nonzero element.
- Illustration: The generating set for the $(7,4)$ code:
$1000===>1101000$
$0100===>0110100$
$0010===>1110010$
$0001===>1010001$

Generator Matrix (cont'd)

- Every codeword is a linear combination of these 4 codewords.
That is: $\mathbf{c}=\mathbf{m} \mathbf{G}$, where

$$
\mathbf{G}=\left[\begin{array}{ccccccc}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
\underbrace{1}_{k \times(n-k)} & 0 & 1 & \underbrace{0}_{k \times k} 0 & 0 & 0 & 1
\end{array}\right]=\left[\mathbf{P} \mid \mathbf{I}_{\mathbf{k}}\right]
$$

- Storage requirement reduced from $2^{k}(n+k)$ to $k(n-k)$.

Parity-Check Matrix

For $\mathbf{G}=\left[\mathbf{P} \mid \mathbf{I}_{k}\right]$, define the matrix $\mathbf{H}=\left[\mathbf{I}_{n-k} \mid \mathbf{P}^{\mathrm{T}}\right]$
(The size of \mathbf{H} is $(n-k) \mathbf{x} n$).
It follows that $\mathbf{G H}^{\mathrm{T}}=\mathbf{o}$.
Since $\mathbf{c}=\mathbf{m G}$, then $\mathbf{c} \mathbf{H}^{\mathrm{T}}=\mathbf{m G H}{ }^{\mathrm{T}}=\mathbf{o}$.

$$
\mathbf{H}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

Encoding Using H Matrix

$\left[\begin{array}{lllllll}c_{1} & c_{2} & c_{3} & c_{4} & c_{5} & c_{6} & c_{7}\end{array}\right]\left[\begin{array}{lll}1 & 0 & \\ 0 & & \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1\end{array}\right]=\mathbf{0}$

$$
\begin{aligned}
& c_{1}+c_{4}+c_{6}+c_{7}=0 \\
& c_{2}+c_{4}+c_{5}+c_{6}=0 \\
& c_{3}+c_{5}+c_{6}+c_{7}=0
\end{aligned} \Rightarrow \begin{aligned}
& c_{1}=c_{4}+c_{6}+c_{7} \\
& c_{2}=c_{4}+c_{5}+c_{6} \\
& c_{3}=c_{5}+c_{6}+c_{7}
\end{aligned}
$$

Encoding Circuit

Input u

The Encoding Problem (Revisited)

- Linearity makes the encoding problem a lot easier, yet: How to construct the G (or H) matrix of a code of minimum distance $d_{\text {min }}$?
- The general answer to this question will be attempted later. For the time being we will state the answer to a class of codes: the Hamming codes.

Hamming Codes

- Hamming codes constitute a class of single-error correcting codes defined as:

$$
n=2^{r}-1, k=n-r, r>2
$$

- The minimum distance of the code $d_{\text {min }}=3$
- Hamming codes are perfect codes.
- Construction rule:

The H matrix of a Hamming code of order r has as its columns all non-zero r-bit patterns.
Size of H: $r \mathrm{x}\left(2^{r}-1\right)=(n-k) \mathrm{x} n$

Decoding

- Let \mathbf{c} be transmitted and \mathbf{r} be received, where

$$
\mathbf{r}=\mathbf{c}+\mathbf{e}
$$

$\mathbf{e} \equiv$ error pattern $=e_{1} e_{2} \ldots . . e_{n}$, where

$e_{i}= \begin{cases}1 & \text { if the error has occured in the } i^{\text {th }} \text { location } \\ 0 & \text { otherwise }\end{cases}$
The weight of \mathbf{e} determines the number of errors.
If the error pattern can be determined, decoding can be achieved by:

$$
\mathbf{c}=\mathbf{r}+\mathbf{e}
$$

Decoding (cont'd)

Consider the $(7,4)$ code.
(1) Let 1101000 be transmitted and 1100000 be received.

Then: $\mathbf{e}=0001000$ (an error in the fourth location)
(2) Let $\mathbf{r}=1110100$. What was transmitted?

	c	e
$\# 2$	0110100	1000000
$\# 1$	1101000	o01100
$\# 3$	101100	o101000
The first scenario is the most probable.		

Standard Array

$$
\begin{aligned}
& \mathrm{C}_{0} \\
& e_{1}+c_{0} \\
& \mathrm{e}_{1}+\mathrm{c}_{1} \\
& \mathrm{e}_{2}+\mathrm{c}_{1} \\
& \mathrm{e}_{1}+\mathrm{c}_{2} \\
& \mathrm{c}_{2^{k}-1} \\
& \mathrm{C}_{1} \\
& \mathrm{C}_{2} \\
& \text {... } \\
& \rightarrow e_{2}+c_{0} \\
& \mathrm{e}_{2}+\mathrm{c}_{2} \\
& \mathrm{e}_{2}+\mathrm{c}_{2^{k}-1} \\
& \vdots \\
& \mathrm{e}_{2^{n-k}-1}+\mathrm{c}_{0} \quad \mathrm{e}_{2^{n-k}-1}+\mathrm{c}_{1} \quad \mathrm{e}_{2^{n-k}-1}+\mathrm{c}_{2} \\
& \mathrm{e}_{2^{n-k}-1}+\mathrm{c}_{2^{k}-1}
\end{aligned}
$$

Standard Array (cont'd)

1. List the 2^{k} codewords in a row, starting with the all-zero codeword c_{o}.
2. Select an error pattern \mathbf{e}_{1} and place it below c_{0}. This error pattern will be a correctable error pattern, therefore it should be selected such that:
(i) it has the smallest weight possible (most probable error)
(ii) it has not appeared before in the array.
3. Repeat step 2 until all the possible error patterns have been accounted for. There will always be $2^{n} / 2^{k}=2^{n-k}$ rows in the array. Each row is called a coset. The leading error pattern is the coset leader.

Standard Array Decoding

- For an (n, k) linear code, standard array decoding is able to correct exactly 2^{n-k} error patterns, including the all-zero error pattern.
- Illustration 1 : The $(7,4)$ Hamming code $\#$ of correctable error patterns $=2^{3}=8$ \# of single-error patterns = 7
Therefore, all single-error patterns, and only singleerror patterns can be corrected. (Recall the Hamming Bound, and the fact that Hamming codes are perfect.

Standard Array Decoding (cont'd)

 Illustration 2: The $(6,3)$ code defined by the H matrix:$$
\mathbf{H}=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right]
$$

Codewords
000000
110001
101010
011011
011100
101101
110110
000111
$d_{\text {min }}=3$

Standard Array Decoding (cont'd)

- Can correct all single errors and one double error pattern
000000110001101010011011011100101101110110000111 000001110000101011011010011101101100110111000110 000010110011101000011001011110101111110100000101 000100110101101110011111011000101001110010000011 001000111001100010010011010100100101111110001111

010000100001111010001011001100111101100110010111
100000010001001010111011111100001101010110100111
100100010101001110111111111000001001010010100011

The Syndrome

- Huge storage memory (and searching time) is required by standard array decoding.
- Define the syndrome

$$
\mathbf{s}=\mathbf{v} \mathbf{H}^{\mathrm{T}}=(\mathbf{c}+\mathbf{e}) \mathbf{H}^{\mathrm{T}}=\mathbf{e} \mathbf{H}^{\mathrm{T}}
$$

- The syndrome depends only on the error pattern and not on the transmitted codeword.
- Therefore, each coset in the array is associated with a unique syndrome.

The Syndrom (cont'd)

Error Pattern Syndrome

0000000	000
1000000	100
0100000	010
0010000	001
0001000	110
0000100	011
0000010	111
0000001	101

Syndrome Decoding

Decoding Procedure:

1. For the received vector \mathbf{v}, compute the syndrome $\mathbf{s}=\mathbf{v H}^{\mathrm{T}}$.
2. Using the table, identify the error pattern \mathbf{e}.
3. Add \mathbf{e} to \mathbf{v} to recover the transmitted codeword \mathbf{c}.

Example:

$$
\mathbf{v}=1110101 \quad==>\quad \mathbf{s}=001 \quad==>\quad \mathbf{e}=0010000
$$

Then, $\mathbf{c}=1100101$

- Syndrome decoding reduces storage memory from $n \times 2^{n}$ to $2^{n-k}(2 n-k)$. Also, It reduces the searching time considerably.

Decoding of Hamming Codes

- Consider a single-error pattern $\mathbf{e}^{(i)}$, where i is a number determining the position of the error.
- $\mathbf{s}=\mathbf{e}^{(i)} \mathbf{H}^{\mathrm{T}}=\mathbf{H}_{i}^{\mathrm{T}}=$ the transpose of the $i^{\text {th }}$ column of \mathbf{H}.
- Example:

$$
\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]
$$

Decoding of Hamming Codes

(cont'd)

- That is, the (transpose of the) $i^{\text {th }}$ column of H is the syndrome corresponding to a single error in the $i^{\text {th }}$ position.
- Decoding rule:

1. Compute the syndrome $\mathbf{s}=\mathbf{v H}{ }^{\mathrm{T}}$
2. Locate the error (i.e. find i for which $\mathbf{s}^{\mathrm{T}}=\mathbf{H}_{i}$)
3. Invert the $i^{\text {th }}$ bit of \mathbf{v}.

Hardware Implementation

- Let $\mathbf{v}=v_{0} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}$ and $\mathbf{s}=s_{0} s_{1} s_{2}$
- From the \mathbf{H} matrix:

$$
\begin{aligned}
& s_{\mathrm{o}}=v_{\mathrm{o}}+v_{3}+v_{5}+v_{6} \\
& s_{1}=v_{1}+v_{3}+v_{4}+v_{5} \\
& s_{2}=v_{2}+v_{4}+v_{5}+v_{6}
\end{aligned}
$$

- From the table of syndromes and their corresponding correctable error patterns, a truth table can be construsted. A combinational logic circuit with s_{0}, s_{1}, s_{2} as input and $e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}$ as outputs can be designed.

Decoding Circuit for the $(7,4) \mathrm{HC}$

